Refine Your Search

Topic

Search Results

Technical Paper

Subcompact Vehicle Energy-Absorbing Steering Assembly Evaluation

1978-02-01
780899
This paper describes the results of a 2 year study into the field accident performances of two basic designs of energy-absorbing steering assemblies. The two basic designs are the axial-collapse type of steering column used in conjunction with a shear capsule and the self-aligning energy-absorbing steering wheel mounted on a nonstroking column. The study identifies major injury causation factors for these two types of steering assemblies. The analysis was performed on 161 accident cases selected for unrestrained drivers in frontal accidents in two vehicle types.
Technical Paper

Automotive Recorder Research - A Summary of Accident Data and Test Results

1974-02-01
740566
The NHTSA has developed automotive recorders which can measure crash triaxial acceleration/time histories during vehicle collisions. From these acceleration histories (recorded on a magnetic disc), velocity/time histories and velocity change during impact are derived to provide measures of vehicle crash severity. The purpose of developing these recorders is to provide accurate and quantitative relationships of vehicle crash severity with occupant fatalities and serious injuries from real-world accidents. To date, a total of 1200 disc recorders has been produced, approximately 1050 recorders have been installed in fleet vehicles, and 23 accident records have been analyzed. This paper has been prepared to present the progress made in the Disc Recorder Pilot Project as of March 31, 1974. Recorder data from accidents involving vehicles equipped with disc recorders will be discussed and compared with associated reports by accident investigators.
Technical Paper

Brake System Safety Analysis

1971-02-01
710593
An important new technique in safety engineering for complex systems is the fault tree analysis method. The results of a motor vehicle brake system safety analysis using the fault tree technique are described. The work is directed toward the identification and ranking of brake system failure modes which may be critical as accident causation factors. Safety criticality for each failure mode is defined as the product of probability of occurrence and severity of effect on vehicle control. Failure data for the brake system components are obtained from maintenance and repair records of a large automobile leasing fleet. An effect scale is developed using a method for pooling expert judgements to obtain the relative ranking of various brake faults as to accident causation potential. The fault tree structure is employed to combine probability and effect to obtain the safety criticality value of each fault.
X